On vector bundles destabilized by Frobenius pull-back

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On vector bundles destabilized by Frobenius pull-back

Let X be a smooth projective curve of genus g > 1 over an algebraically closed field of positive characteristic. This paper is a study of a natural stratification, defined by the absolute Frobenius morphism of X, on the moduli space of vector bundles. In characteristic two, there is a complete classification of semi-stable bundles of rank 2 which are destabilized by Frobenius pull-back. We also...

متن کامل

On Frobenius-destabilized Rank-2 Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field k of characteristic p > 0. Let MX be the moduli space of semistable rank-2 vector bundles over X with trivial determinant. The relative Frobenius map F : X → X1 induces by pull-back a rational map V : MX1 99K MX . In this paper we show the following results. (1) For any line bundle L over X , the rank-p vector ...

متن کامل

Hitchin-mochizuki Morphism, Opers and Frobenius-destabilized Vector Bundles over Curves

Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. For p sufficiently large (explicitly given in terms of r, g) we construct an atlas for the locus of all Frobenius-destabilized bundles (i.e. we construct all Frobenius-destabilized bundles of degree zero up to isomorphism). This is done by exhibiting a surjective morphism from...

متن کامل

A Remark on Frobenius Descent for Vector Bundles

We give a class of examples of a vector bundle on a relative smooth projective curve over SpecZ such that for infinitely many prime reductions the bundle has a Frobenius descent, but the generic restriction in characteristic zero is not semistable. Mathematical Subject Classification (2000): primary: 14H60, secondary: 13A35.

متن کامل

Frobenius-unstable Vector Bundles and the Generalized Verschiebung

Let C be a smooth curve, and Mr(C) the coarse moduli space of vector bundles of rank r and trivial determinant on C. We discuss the generalized Verschiebung map Vr : Mr(C) 99K Mr(C) induced by pulling back under Frobenius. We begin with a survey of general background results on the Verschiebung, as well as certain more specialized work in fixed genus, characteristic, and rank. We then discuss t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2006

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x05001788